SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

Last Update: 9.26.14 File reformatted.

(Engineer shall edit specifications and blue text in header to meet project requirements. This includes but is not limited to updating Equipment and/or Material Model Numbers indicated in the specifications and adding any additional specifications that may be required by the project. <u>Also turn off all "Underlines".</u>)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this section and all other sections of Division 26.

1.2 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:
 - 1. Distribution transformers.
 - 2. Ktype transformers.
 - 3. Buck-boost transformers.

1.3 SUBMITTALS

- A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Qualification Data: For testing agency.
- D. Source quality-control test reports.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

Engineer: Retain paragraph A with subparagraph if Contractor chooses Agency or retain paragraph B.

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7.
- C. Source Limitations: Obtain each transformer type through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

1.6 COORDINATION

- A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

1.7 <u>WARRANTY/GUARANTEE</u>

A. <u>See Division 26 Specification Section "Basic Electrical Requirements' for warranty and guarantee requirements.</u>

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by <u>one (1)</u> of the following:
 - 1. ACME Electric Corporation; Power Distribution Products Division.
 - 2. Challenger Electrical Equipment Corp.; a division of Eaton Corp.
 - 3. Eaton Electrical Inc.; Cutler-Hammer Products.
 - 4. Sola/Hevi-Duty.
 - 5. Square D; Schneider Electric.

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Cores: Grain-oriented, non-aging silicon steel.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Copper.

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NEMA ST 20, and list and label as complying with UL 1561.
- B. Cores: One leg per phase.
- C. Enclosure: Ventilated NEMA 250, Type 2.
 - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.
- D. Enclosure: Ventilated, NEMA 250, Type 4X, stainless steel.
 - 1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

- E. Transformer Enclosure Finish: Comply with NEMA 250.
 - 1. Finish Color: ANSI 49 gray.
- F. Taps for Transformers 7.5 to 24 kVA: <u>One (1) 5 %</u> tap above and <u>one (1) 5 %</u> tap below normal full capacity.
- G. Taps for Transformers 25 kVA and Larger: <u>Two (2)</u> 2.5 % taps above and <u>two (2)</u> 2.5 % taps below normal full capacity.
- H. Insulation Class: 220°C, UL-component-recognized insulation system with a maximum of 115°C rise above 40°C ambient temperature.
- I. Energy Efficiency for Transformers Rated 15 kVA and Larger:
 - 1. Complying with NEMA TP 1, Class 1 efficiency levels.
 - 2. Tested according to NEMA TP 2.
- J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
- K. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
 - 3. Shield Effectiveness:
 - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 - b. Common-Mode Noise Attenuation: Minimum of minus 120 dBA at 0.5 to 1.5 kHz; minimum of minus 65 dBA at 1.5 to 100 kHz.
 - c. Normal-Mode Noise Attenuation: Minimum of minus 52 dBA at 1.5 to 10 kHz.
- L. Wall Brackets: Manufacturer's standard brackets.
- M. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.

- N. Low-Sound-Level Requirements: Maximum sound levels, when factory tested according to IEEE C57.12.91, as follows:
 - 1. 9 kVA and Less: 37 dBA.
 - 2. 30 to 50 kVA: 42 dBA.
 - 3. 51 to 150 kVA: 47 dBA.
 - 4. 151 to 300 kVA: 52 dBA.
 - 5. 301 to 500 kVA: 57 dBA.
 - 6. 501 to 750 kVA: 59 dBA.
 - 7. 751 to 1000 kVA: 61 dBA.

2.4 BUCK-BOOST TRANSFORMERS

- A. Description: Self-cooled, two-winding dry type, rated for continuous duty and with wiring terminals suitable for connection as autotransformer. Transformers shall comply with NEMA ST 1 and shall be listed and labeled as complying with UL 506 or UL 1561.
- B. Enclosure: Ventilated, NEMA 250, Type 2.
 - 1. Finish Color: ANSI 49 gray.

2.5 IDENTIFICATION DEVICES

- A. Nameplates: Engraved, laminated-plastic or metal nameplate for each [distribution] [buck-boost] transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Division 26 Section "Identification for Electrical Systems."
- 2.6 SOURCE QUALITY CONTROL
 - A. Test and inspect transformers according to IEEE C57.12.91.
 - B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 3 ohms at location of transformer.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.

3.3 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- C. Remove and replace units that do not pass tests or inspections and retest as specified above.
- D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 - 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.

- 2. Perform <u>one (1)</u> follow-up infrared scans of transformers, at <u>eleven (11)</u> months after Substantial Completion.
- 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.
- E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 % and not being lower than nameplate voltage minus 3% at maximum load conditions. Submit recording and tap settings as test results.
- B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 16461