DIVISION IV # LIFE CYCLE COST ANALYSIS _____ #### DIVISION IV LIFE CYCLE COST ANALYSIS #### 1. INTRODUCTION: **1.1. LIFE CYCLE COST ANALYSIS (LCCA):** This is an economic analysis technique considering initial acquisition costs and the recurring cost associated with the operation, maintenance, energy use, and other costs of ownership. The objective of LCCA is to optimize the cost of ownership of a building. #### 2. APPLICABILITY: - **2.1.** This procedure shall be followed by all Architectural and Engineering (A/E) firms, and Consulting Firms conducting business with the University: It is the policy of the University that State owned or financed buildings shall be constructed in a manner to minimize initial costs of construction, recurring costs associated with the consumption of energy resources, and the operation and maintenance of those buildings. - **2.2.** The Procedures described in this document shall be utilized to analyze Architectural, Structural, Mechanical and Electrical components, materials, and systems for all New Buildings, Additions to Existing Buildings, and Major Renovations of Existing Buildings. - **2.3.** The A/E Team shall meet with the University to select the components, materials, and systems that should be analyzed. #### **3. PROCEDURES:** - **3.1. LCCA Procedures:** Through the use of LCCA Procedures, the Consultant shall determine: - **a.** The System's Cost Effectiveness for new construction, where the optimum building system or component has the lowest total life cycle cost that meets the requirements of the building. - **b.** The Cost Effectiveness of Retrofit Systems for renovation projects, where the most effective system that has the lowest total life cycle cost that meets the requirements of the building. - **3.2. Implementation of Life Cycle Cost Analysis:** The step by step procedure to analyze the Life Cycle Cost of any component, material, or system is described in this section. The steps and forms in section 4 were developed for use in evaluating a base mechanical or plumbing system and alternative mechanical or plumbing systems. The forms shall be modified as appropriate to evaluate other systems, components, or materials, such as Architectural, Structural, Electrical or other systems. - **a. Step One: System Descriptions:** Using Form 4.1, describe five (5) complete HVAC systems, base system plus four (4) alternate systems. - **b. Step Two: Utility Cost Data:** Using Form 4.2, identify the utility cost data. - **c. Step Three: Initial Cost Estimate Base System:** Using the 4.3 Forms identify the initial cost of the mechanical base system. - **d. Step Four: Initial Cost Estimate Alternate:** Using the 4.4 Forms identify the initial cost of each mechanical alternate system. - **e. Step Five: Annual Cost Base System:** Using the 4.5 Forms, identify the energy cost and the service and maintenance cost of the mechanical base system. The Consultant shall establish the utility and maintenance unit cost in consultation with the University. - **f. Step Six: System Replacement Cost Base System:** Using Form 4.6, identify the present value of replacement cost of the major equipment in the mechanical base system. The Consultant shall establish the system and component and salvage (life expectancy) values in consultation with the University. - **g. Step Seven: Annual Cost Alternate:** Using the 4.7 Forms, identify the energy cost and the service and maintenance cost for each mechanical alternate system. Use duplicate forms for each alternate. The Consultant shall establish the utility and maintenance unit cost in consultation with the University. - h. Step Eight: System Replacement Cost Alternate: Using Form 4.8, identify the present value of replacement cost of major equipment in each mechanical alternate system. Use duplicate forms for each alternate. The Consultant shall establish the system and component and salvage (Life Expectancy) values in consultation with the University. - **i. Step Nine: Summary LCCA:** Using Form 4.9, summarize the LCCA Data for the mechanical base system and each mechanical alternate system. Identify the recommended system. - **4. FORMS:** The Forms on the following pages are available from UM, electronically. #### 4.1. SYSTEM DESCRIPTIONS | Project: | Date: | |---------------------------------|-------| | Location: | | | | | | | | | By: (Engineer's Name and Title) | | | | | | Base System: | | | | | | | | | | | | | | | A144. #4 | | | Alternate #1: | | | | | | | | | | | | | | | Alternate #2: | | | | | | | | | | | | | | | | | | Alternate #3: | | | | | | | | | | | | | | | Alternate #4: | | | IMCINCO IIT. | | | | | | | | | | | **COST** \$ Per Unit **ESCALATION RATE** #### **4.2. UTILITY COST DATA** **ENERGY TYPE** Others Electric Energy Charge | | \$ Per KWH (Winter) | | |------------------------|---------------------|--| | Electric Energy Charge | | | | | \$ Per KWH (Summer) | | | | \$ Per KWH (Winter) | | | Electric Demand Charge | | | | | \$ Per KWH (Summer) | | | | \$ Per MLB (Winter) | | | Steam Energy Charge | | | | | \$ Per MLB (Summer) | | | | \$ Per MLB (Winter) | | | Steam Demand Charge | | | | | \$ Per MLB (Summer) | | | | | | | Gas | \$ Per MCF or Therm | | | | | | | E 101 | ¢ D C 11 | | | Fuel Oil | \$ Per Gallon | | | Utility Summer Rate Months: | (from) | (to) | |-----------------------------|--------|------| | Utility Winter Rate Months: | (from) | (to) | | LCCA Term (Typically 30 Ye | ars): | | | Discount Rate: | | | #### 4.3. INITAL COST ESTIMATE – BASE SYSTEM #### a. HVAC MAJOR EQUIPMENT | ITEM | QTY
UNITS | CAPACITY | UNIT P | RICE
LABOR | TOTAL P | RICE
LABOR | |------------------------------------|--------------|---------------------------|--------|---------------|---------|---------------| | 1. Chillers | | Tons | | | | | | 2. Cooling Towers | | Tons | | | | | | 3. HT. Exchangers | | GPM
MBH | | | | | | 4. Pumps | | GPM
TH
HP | | | | | | 5. A.H.U. | | CFM
CMBH
HMBH
HP | | | | | | 6. Supply Fans | | CFM
HP | | | | | | 8. Return Fans | | CFM
HP | | | | | | 9. Exhaust Fans | | CFM
HP | | | | | | 10. Other Fans | | CFM
HP | | | | | | 11. Terminal Units | | CFM | | | | | | 12. Misc Equip. | | MBH
CFM
HP | | | | | | 13. Fuel Oil w/
Leak Detection. | | Gal. | | | | | | 14. ATC | | | | | | | | Base System HVAC Major Equipment Sub Total: | | |---|--| | Race System H v A (Wiging Hallinment Slin Total) | | | Dase System II vite Major Equipment Sub Total. | | #### b. HVAC MATERIAL | ITEM | QTY | UNITS | UNIT PRICE | | TOTAL PRICE | | | |--|-----|------------|------------|-------|-------------|-------|--| | | | OF MEASURE | MATERIAL | LABOR | MATERIAL | LABOR | | | 1. Supply / Return
Ductwork,
complete including
diffusers, grilles,
dampers,
insulation etc | | | | | | | | | 2. General Exhaust
Ductwork,
complete including
diffusers, grilles,
dampers,
insulation etc | | | | | | | | | 3. Special Exhaust
Systems | | | | | | | | | 4. Heating Piping (HS, HR) | | FEET | | | | | | | 5. Chilled Piping (CHS, CHR) | | FEET | | | | | | | 6. Condenser
Water Piping
(CWS, CWR) | | FEET | | | | | | | 8. Steam Piping (MP, LP) | | FEET | | | | | | | 9. Steam
Condensate Piping
(MP, LP) | | FEET | | | | | | #### b. HVAC MATERIAL (Continued) | ITEM | QTY | UNITS
OF MEASURE | UNIT PR
MATERIAL | TOTAL PI
MATERIAL | | |--|-----|---------------------|---------------------|----------------------|--| | 10. Natural Gas
Piping
(Non - Lab) | | FEET | | | | | 11. Pipe Insulation | Base System HVAC Material Sub Total: | Base System HVAC Material Sub Total: | | |--------------------------------------|--------------------------------------|--| |--------------------------------------|--------------------------------------|--| #### c. PLUMBING MAJOR EQUIPMENT | ITEM | QTY | CAPACITY | UNIT P | RICE | TOTAL P | RICE | |----------------------------------|-------|------------------------|----------|-------|----------|-------| | | UNITS | _ | MATERIAL | LABOR | MATERIAL | LABOR | | 1. Domestic Water
Heaters and | | Storage in Gal. | | | | | | Storage Tank | | Recovery
GPH
MBH | | | | | | 2. Circulating
Pumps | | GPM
TH
HP | | | | | | 3. Sump Pumps | | GPM
TH
HP | | | | | | 4. Sewage Ejectors | | GPM
TH
HP | | | | | | 3. RO/DI Water
Equipment | Base System Plumbing Major Equipment Sub Total: | |---| |---| #### d. PLUMBING MATERIAL | ITEM | QTY | UNITS
OF MEASURE | UNIT PR
MATERIAL | RICE
LABOR | TOTAL PI
MATERIAL | RICE
LABOR | |---|-----|---------------------|---------------------|---------------|----------------------|---------------| | 1. Domestic Water | | | | | | | | Piping with | | | | | | | | Insulation | | FEET | | | | | | (CW, HW, HWR) | | | | | | | | 2. Sanitary & Vent | | | | | | | | (Non – Lab Above | | | | | | | | Grade) | | | | | | | | 3. Sanitary & | | | | | | | | Vent | | | | | | | | (Lab – Acid Waste | | | | | | | | Above Grade) | | | | | | | | 4. Storm Water | | | | | | | | (Above Grade) | | | | | | | | 5. Lab Support | | | | | | | | Piping – Air, Vac, | | | | | | | | Natural Gas | | | | | | | | 6. RO / DI Piping | | | | | | | | System | | | | | | | | 7. Sprinkler | | | | | | | | System, Complete | Base System Plumbing Material Sub Total: | | | | | | | | | | | | | | | | Base System Mechanical Installation Initial Cost Total: | | | | | | | #### 4.4. INITAL COST ESTIMATE – ALTERNATE SYSTEM # #### a. HVAC MAJOR EQUIPMENT | ITEM | QTY
UNITS | CAPACITY | UNIT PI
MATERIAL | RICE
LABOR | TOTAL P | RICE
LABOR | |------------------------------------|--------------|---------------------------|---------------------|---------------|---------|---------------| | 1. Chillers | | Tons | | | | | | 2. Cooling Towers | | Tons | | | | | | 3. HT. Exchangers | | GPM
MBH | | | | | | 4. Pumps | | GPM
TH
HP | | | | | | 5. A.H.U. | | CFM
CMBH
HMBH
HP | | | | | | 6. Supply Fans | | CFM
HP | | | | | | 8. Return Fans | | CFM
HP | | | | | | 9. Exhaust Fans | | CFM
HP | | | | | | 10. Other Fans | | CFM
HP | | | | | | 11. Terminal Units | | CFM | | | | | | 12. Misc Equip. | | MBH
CFM
HP | | | | | | 13. Fuel Oil w/
Leak Detection. | | Gal. | | | | | | 14. ATC | | | | | | | | Alternate Sy | ystem H' | VAC Majoi | r Equipment | t Sub Total: | |--------------|----------|-----------|-------------|--------------| |--------------|----------|-----------|-------------|--------------| #### b. HVAC MATERIAL | ITEM | QTY | UNITS | UNIT PR | RICE | TOTAL P | RICE | |--|-----|------------|----------|-------|----------|-------| | | | OF MEASURE | MATERIAL | LABOR | MATERIAL | LABOR | | 1. Supply / Return
Ductwork,
complete including
diffusers, grilles,
dampers,
insulation etc | | | | | | | | 2. General Exhaust
Ductwork,
complete including
diffusers, grilles,
dampers,
insulation etc | | | | | | | | 3. Special Exhaust
Systems | | | | | | | | 4. Heating Piping (HS, HR) | | FEET | | | | | | 5. Chilled Piping (CHS, CHR) | | FEET | | | | | | 6. Condenser
Water Piping
(CWS, CWR) | | FEET | | | | | | 8. Steam Piping (MP, LP) | | FEET | | | | | | 9. Steam Condensate Piping (MP, LP) | | FEET | | | | | #### b. HVAC MATERIAL (Continued) | ITEM | QTY | UNITS | UNIT PR | RICE | TOTAL P | RICE | |--|-----|------------|----------|-------|----------|-------| | | | OF MEASURE | MATERIAL | LABOR | MATERIAL | LABOR | | 10. Natural Gas
Piping
(Non - Lab) | | FEET | | | | | | 11. Pipe Insulation | Alt | ternate System HVAC Material Sub Total: | | |-----|---|--| #### c. PLUMBING MAJOR EQUIPMENT | ITEM | QTY CAPACITY | | UNIT PRICE | | TOTAL PRICE | | |----------------------------------|--------------|------------------------|-------------------|-------|-------------|-------| | | UNITS | 1 | MATERIAL | LABOR | MATERIAL | LABOR | | 1. Domestic Water
Heaters and | | Storage in Gal. | | | | | | Storage Tank | | Recovery
GPH
MBH | | | | | | 2. Circulating Pumps | | GPM
TH
HP | | | | | | 3. Sump Pumps | | GPM
TH
HP | | | | | | 4. Sewage Ejectors | | GPM
TH
HP | | | | | | 3. RO/DI Water
Equipment | Alternate System Plumbing M | aior Equipment Sub Total· | |-------------------------------|---------------------------| | Trice nate bystem i fumbing w | ajor Equipment bub Total. | #### d. PLUMBING MATERIAL | ITEM | QTY | UNITS
OF MEASURE | UNIT PR
MATERIAL | RICE
LABOR | TOTAL PI
MATERIAL | RICE
LABOR | |---------------------------|---------|---------------------|---------------------|---------------|----------------------|---------------| | 1. Domestic Water | | | | | | | | Piping with | | | | | | | | Insulation | | FEET | | | | | | (CW, HW, HWR) | | | | | | | | 2. Sanitary & Vent | | | | | | | | (Non – Lab Above | | | | | | | | Grade) | | | | | | | | 3. Sanitary & | | | | | | | | Vent
(Lab – Acid Waste | | | | | | | | Above Grade) | | | | | | | | Above Grade) | | | | | | | | 4. Storm Water | | | | | | | | (Above Grade) | | | | | | | | | | | | | | | | 5. Lab Support | | | | | | | | Piping – Air, Vac, | | | | | | | | Natural Gas | | | | | | | | 6. RO / DI Piping | | | | | | | | System | | | | | | | | | | | | | | | | 7. Sprinkler | | | | | | | | System, Complete | Alternate System F | Plumbin | n Matarial Sub | Total· | | | | | Anternate System P | rampili | g Material Sub | ı vtal. | | | | | UM Procedure Ma | mual for Professi | onal A/E Service | es for Design/ | Build Contracts | |-----------------|-------------------|------------------|----------------|-----------------| **Alternate System Mechanical Installation Initial Cost Total:** #### 4.5. ANNUAL COST – BASE SYSTEM a. ENERGY (Excluding Lights & Receptacles) | ENERGY
SOURCE | UNITS
OF
MEASURE | ANNUAL
ENERGY
CONSUMPTION | ENERGY
COST | DEMAND
CHARGE | TOTAL ANNUAL ENERGY COST | |------------------|------------------------|---------------------------------|----------------|------------------|--------------------------| | 1. Electric | | | | | | | (Winter) | | | | | | | 2. Electric | | | | | | | (Summer) | | | | | | | 3. Gas | | | | | | | (Winter) | | | | | | | 4. Gas | | | | | | | (Summer) | | | | | | | 5. Steam | | | | | | | (Winter) | | | | | | | 6. Steam | | | | | | | (Summer) | | | | | | | | | | | | | | 7. Fuel Oil | | | | | | | 8. Others | | | | | | | Base System Annual Energy Cost Total: | | |--|--| #### b. SERVICE AND MAINTENANCE COST | MAJOR
EQUIPMENT | ANNUAL
SERVICE
COST | ANNUAL
MAINTENANCE
COST | TOTAL SERVICE & MAINTENANCE COST | |-------------------------------|---------------------------|-------------------------------|----------------------------------| | 1. Chillers | | | | | 2. Cooling Towers | | | | | 3. Heat Exchangers | | | | | 4. Pumps | | | | | 5. Air Handling Units | | | | | 6. Supply Fans | | | | | 7. Return Fans | | | | | 8. Exhaust Fans | | | | | 9. Terminal Units | | | | | 10. Domestic Water
Heaters | | | | | 11. RO / DI
Equipment | | | | | 12. Exhaust Fans | | | | | 13. ATC | | | | | 14. Misc. Equipment | | | | | Base System Service and Maintenance Cost Total: | | |---|--| | J | | #### 4.6. SYSTEM REPLACEMENT COST – BASE SYSTEM | PRESENT VALUE OF EQUIPMENT REPLACEMENT COST | | | | | | |---|-------------|--|-------------------------------|---|--| | Major
Equipment | Useful Life | Replacement Cost
In Current Dollars
(RC) | Present Worth
Factor (PWF) | Present Value (PV) of Replacement Cost PWF x RC | Base System Present Value of Equipment Replacement Cost Total: | | |---|--| | Raca System Present Value at Fallinment Panlacement L'act l'atale | | | i dase System i resem yame or rambumem Nediacemem Cost Folat. | | | Dube by broth I reseme value of Equipment Replacement Cost rotals | | #### 4.7. ANNUAL COST – ALTERNATE # a. ENERGY (Excluding Lights & Receptacles) | ENERGY
SOURCE | UNITS
OF
MEASURE | ANNUAL
ENERGY
CONSUMPTION | ENERGY
COST | DEMAND
CHARGE | TOTAL
ANNUAL
ENERGY
COST | |------------------|------------------------|---------------------------------|----------------|------------------|-----------------------------------| | 1. Electric | | | | | | | (Winter) | | | | | | | 2. Electric | | | | | | | (Summer) | | | | | | | 3. Gas | | | | | | | (Winter) | | | | | | | 4. Gas | | | | | | | (Summer) | | | | | | | 5. Steam | | | | | | | (Winter) | | | | | | | 6. Steam | | | | | | | (Summer) | | | | | | | 7. Fuel Oil | | | | | | | 8. Others | | | | | | | Alternate System Annual Energy Cost Total: | | |---|--| #### b. SERVICE AND MAINTENANCE COST | MAJOR
EQUIPMENT | ANNUAL
SERVICE
COST | ANNUAL
MAINTENANCE
COST | TOTAL SERVICE & MAINTENANCE COST | |-------------------------------|---------------------------|-------------------------------|----------------------------------| | 1. Chillers | | | | | 2. Cooling Towers | | | | | 3. Heat Exchangers | | | | | 4. Pumps | | | | | 5. Air Handling Units | | | | | 6. Supply Fans | | | | | 7. Return Fans | | | | | 8. Exhaust Fans | | | | | 9. Terminal Units | | | | | 10. Domestic Water
Heaters | | | | | 11. RO / DI
Equipment | | | | | 12. Exhaust Fans | | | | | 13. ATC | | | | | 14. Misc. Equipment | | | | | Alternate System Service and Maintenance Cost Total: | | |--|--| | Altornoto System Sarvica and Maintananaa Cast Latali | | | Allel hale Avsiem Selvice and Mannehance Cost Tolai: | | | Three mate by been bet vice and infamice and I other | | #### 4.8. SYSTEM REPLACEMENT COST – ALTERNATE # | PRESENT VALUE OF EQUIPMENT REPLACEMENT COST | | | | | | |---|-------------|--|-------------------------------|---|--| | Major
Equipment | Useful Life | Replacement Cost
In Current Dollars
(RC) | Present Worth
Factor (PWF) | Present Value (PV) of Replacement Cost PWF x RC | Alternate System Present Value of Equipment Replacement Cost Total: | | |--|--| | LAITERNATE System Present value of Bollinment Renlacement Cost Lotal | | | Mitchiate Dystem Liesem value of Equipment Replacement Cost Lotal: | | #### 4.9. SUMMARY - LCCA | PROJECT: | | | DATE: | |--|-------------|-------------------|-------------------| | COSTS | BASE SYSTEM | ALTERNATIVE
#1 | ALTERNATIVE
#2 | | 1. Mechanical Installation
Initial Cost Total | | | | | 2. Incremental Cost For Architectural Components (+ / - over base system) | N/A | | | | 3. Incremental Cost For Structural Components (+ / - over base system) | N/A | | | | 4. Incremental Cost For Electrical Components (+ / - over base system) | N/A | | | | Total Initial Cost | | | | | Annual | | | | | Energy Cost | | | | | Annual
Service Cost | | | | | Annual | | | | | Routine Maintenance Cost | | | | | Total Annual Cost | | | | | Present Value (PV) of | | | | | Total Annual Cost | | | | | (Total Annual Cost x PW Factor) | | | | | Present Value of | | | | | Equipment Replacement
Cost | | | | | Total Life Cycle Cost
(Total Initial Cost + PV of Total
Annual Cost + PV of Equipment
Replacement Cost) | | | | #### 4.9. **SUMMARY - LCCA (Continued)** | PROJECT: | | DATE: | | | |--|-------------|-------------------|-------------------|--| | COSTS | BASE SYSTEM | ALTERNATIVE
#3 | ALTERNATIVE
#4 | | | 1. Mechanical Installation
Initial Cost Total | | | | | | 2. Incremental Cost For
Architectural Components
(+/- over base system) | N/A | | | | | 3. Incremental Cost For Structural Components (+/- over base system) | N / A | | | | | 4. Incremental Cost For Electrical Components (+ / - over base system) | N / A | | | | | Total Initial Cost | | | | | | Annual | | | | | | Energy Cost | | | | | | Annual | | | | | | Service Cost | | | | | | Annual Routine Maintenance Cost | | | | | | Total Annual Cost | | | | | | Present Value (PV) of Total Annual Cost (Total Annual Cost x PW Factor) | | | | | | Present Value of Equipment Replacement Cost | | | | | | Total Life Cycle Cost
(Total Initial Cost + PV of Total
Annual Cost + PV of Equipment
Replacement Cost) | | | | | | Equipment Replacement | | | |--|--|--| | Cost | | | | Total Life Cycle Cost
(Total Initial Cost + PV of Total
Annual Cost + PV of Equipment
Replacement Cost) | | | | | | | | Recommended System: | | |